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Abstract— The third order PDE which describes the 

nonlinear shallow water wave equation has been interested since 

Scott Russel (1844) [1]. 

   In this work we study this kind of equation (mKDV), 

through our study we find that even if the (mKDV) equation 

does not pass Painleve test but by using Schwarzian Derivative 

techinque, we were able to find analytic solution. Also we 

support this study by some figures that to describe the behavior 

of (mKDF) equation. 

 

Index Terms—(mKDV) modified Kortewege-de Vrise 

equation, Painleve’s property, Schwarzian Derivative,   

Resonanse points. 

 

I. INTRODUCTION 

  A nonlinear third order PDE (mKDV) equation can be used 

to describe most phenomena in scientific field and other 

domain which normally result from spontaneity motion that 

appears in the daily life such as the waves water [1]. 

Some authors considers the (mKDV) in the form:  

 
The determination of the Lie symmetry of above equation 

provides us with the similarity ansatz,  

 
The quantity a is called similarity variable. Taking the ansatz 

u(x,t) yields, 

 
integration leads to, 

 
where c is a constant. [7] 

  The hyper-surface where the singularities lie is known of the 

singular manifold, so it can define a technique of Painleve for 

PDEs [3]. 

Definition: The painleve technique for PDEs, it is on analytic 

with definition in mind, it is natural to find the PDE in the 

form a Laurint-like expansion [3] 

 
The leading power P appearing in order of above equation, 

where power P is positive integer with the expansion 

coefficient uj starts analytic function in a neighborhood of the 

manifold  , 0t x   , [3]. 

 

 
 Attia A.H .Mostafa, (Attia Mostafa) Department of Mathematics, Omer 

El-mokhtar University, Elgubba, Libya;  

Anis I.F .Saad, (Anis Saad) Department of Mathematics, Omer 

El-mokhtar University, Elbida, Libya 

II. PAINLEVE ANALYSIS  

 

     In this section we apply Painleve’s test in the (mKdV) 

equation:              
2 0, \{0}t x xxxu u u u      

 

To verify the (mKDV) has Painleve property or not, we use a 

method for expanding of the non-linear PDE 

 (presently mKDV) about a movable singularly (presently 

 , 0t x   ) 

The series of non-linear PDE is in the form [3]. 

 

where ju and are analytic functions. 

Some authors to determine equation (1) by using the 

simplified condition  

 
where  is an arbitrary function and   is a characteristic of 

equation (1). Then  we can take the coefficient in the equation 

(2) to be function of t only. To find a value of equilibrium p 

that by substituting (2) into (1) where 

   , , /tu t x u t x t   ,    , , /xu t x u t x x    

and    3 3, , /xxxu t x u t x x   ,and by comparing the 

lowest powers in the eventual series, we observe P=1 in the 

neighborhood of the singularity manifold (1). By associating 

the summation, we observe the recursion [1],  
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By using the technique of Painleve, and let uj=0 for all j>1. 

Then the serious solution (2) leads 
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Now, to find the value of uj where  j=0,1,2,… 

To find u0 then at  j = 0 in the equation (3), we obtain:                                                                                                                                                            

 0

6
, 1,xu i i


    

To find u1 ,then at j = 1 in the equation (3), we obtain: 

  
1

6
,

2

xx

x

i
u



 
   

To find 2u ,then at j = 2 in the equation (3), we obtain:                 
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Now, in equation (3), we have to find all coefficients of uj

 

 and 

the relation becomes: 

 

    We note that the all coefficients of  uj in the equation (7) are 

(j − 3) and 

   
3 1

2 4
j 

  
     

   

,  

then, in the universal of the integer resonance point is j = 3. 

   The other values of resonance depend on the value of α. For 

example, if α = −6, the resonance points will be  j = −1, 3, 4. 

     Now, at  j = 3, and by using the equations (3), (5) ,(6) and 

(7), we find, 
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but, uj=0  for all j > 1, we get. 

  

2

0, 0, 0 1 1, 0, 12 0,t xxx x xu u u u u u u     

Inconsistent at the resonance point j = 3, this leads that the 

(mKDV1) does not satisfy the Painleve’s test. 

    Now, at  j = 4 in the equation (8), we get, 
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By realizing the equation (5) into the equation (9), and 

0ju  for all j > 1, 

we get, 
2

1, 1 1, 1, 0,t x xxxu u u u    

Then u1  is also a solution of the (mKdV) equation (1). 

 

III. ANALYTIC SOLUTION: 

In this section, we follow the project to derive analytic 

solution with the transmutation,                             

: , ,
a b

T ad bc
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The Schwartzian derivative [2].                                        

 
2

3
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The dimension of velocity [2], 

 C ,t

x





   

The compatibility of C and S depicted by:                                         

2 0.t xxx x xS C C S CS     

By comparing the equations (10) and (11) with the equation 

(6), and, uj=0 for all j>1  

we find: 

.C S                                                       

By substituting S = C into the equation (12), we get:                                         

3 0,t x xxxS SS S    

This is (mKdV1) like equation. 

 

IV. SCHWARZIAN DERIVATIVE: 

Solution for a constant S. 

     The functions of a constant 
2S= 2  hence λ is a 

constant, are solutions of the 

(mKDV1) like equation (13). 

 

Lemma [1]: Let 1 and 2  be two linearly independent 

solutions of the equation,                                                    

 
2

2
0,

d
f z

dz


   

which are defined and holomorphic on some simply 

connected domain D in complex 

plane, then      1 2/w z z z  satisfies the equation [1] 

[2], 

   , 2 ,w z f z  

Conversely, if w(z) is a solution of (16) at all points of D, then 

one can find two 

linearly holomorphic independent solutions 1  and 2 of (15) 

such that  

     1 2/w z z z  in some neighborhood of 

0 .z D [1]. 

Lemma [2]: The Schwartzian derivative is invariant under 

fractional linear 

transformation acting on the first argument, the form:                          

 ; ; , ,
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 
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where a, b, c and d are constants [1] [2]. 
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Step 1: 

For
2S=-2 , we get, 

  2, -2 .S x    Where   2f x   in (15),  

and two linearly independent solutions are:       
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Therefore by Lemma [1] and Lemma [2], obtain:                    
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By using the equations (10) and (11),  

then: 
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 Now, to find the differential equation of coefficients E(t), 

F(t), G(t) and H(t), 

we derive  ,t x in the equation (16), to get  ,t t x  

and  ,x t x , and substituting them into the equation (17), 

we obtain:   

 

 

 
2

2 ( ) ( ) ( ) ( )
,

( ) ( )
x

x x

H t E t G t F t

G t e H t e 










 

and 

     

 

 
 

 
 

 
 

 

2

2

2

2

2

2

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
,

( ) ( )

x

t
x x

x

x x

x x

x x

G t E t E t G t
e

G t e H t e

H t F t F t H t
e

G t e H t e

G t F t F t G t

G t e H t e

H t E t E t H t

G t e H t e



 



 

 

 












 




 




 




 




  

 

Then, the equation (17) becomes:                          

 

 

 

 

 

 

 

 

2

2

2

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
2 ,

2 ( ) ( ) ( ) ( )

x

x

G t E t E t G t
C e

H t E t G t F t

H t F t F t H t
e

H t E t G t F t

G t F t F t G t

H t E t G t F t

H t E t E t H t

H t E t G t F t
















 




 




 




 
 



   

Then, 
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This lets us to a system of nonlinear ODE in all 

coefficients E(t), F(t),G(t) and H(t), then:    
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particular solutions of (i) and (ii) are: 

 E(t) = AG(t)  and  F(t) = BH(t) 

where A and B are real arbitrary constants. 

 

By using (i), (ii) and (iii), we have: 
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By integrating, we get: 
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Then: 

  1 2 1, tanh ,t x K K       

 

Where K1 and K2  are arbitrary constants, such that  

  and . 

For K1=0, and by substituting the equation (18) into the 

equation (4), we get: 
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Then:                 
2

1 1 1

6
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Where  1 ,u x t is the first solution for (mKDV) equation 

(1). 

 

Now, by the equations (4), (5), (6) and (18),  we have: 
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Where u(t, x) is the second solution for (mKDV) equation (1). 

 

Step 2: 

For 
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Therefore, Lemma [1] and Lemma [2] obtain: 
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By using the equations (11) and S=C, then: 
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   Now, to find coefficients of the differential equation, E(t), 
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This takes us to a system of nonlinear ODEs in all coefficients 

E(t), F(t),G(t) and H(t), then: 
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particular solutions of (i) and (ii) are: 

 E(t) = MG(t) and   F(t) = NH(t) 

where M and N are real arbitrary constants. 

By substituting these into (iii), we get: 
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Then: 

  3 4 2, tan ,t x K K    

 

where K3 and K4 are arbitrary constants, such that 

 and   

For K3=0,by substituting the equation (21) into the equation 

(4), we get:   
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
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Then:                             

2

1 2 2

6
tan , 2 .u i x t   





     

Where 1( , )u x t


 is the third solution for (mKDV) equation 

(1). 

   Now, by the equations (4), (5), (6) and (21), we get: 
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6
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Then:                                

2
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6
cot , 2 .u i x t   





    

Where ( , )u x t


is the fourth solution for (mKDV) equation 

(1). 
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Fig. Shows the behavior of  the  solutions for 

mKdV equation at different times. 


